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Abstract

We establish the existence of positive entire solutions to cooper-
ative systems of semilinear elliptic equations involving nonlinearities
with critical and supercritical growth. Consequently, we obtain exis-
tence results to several well-known model examples such as systems
of the Hénon, Lane-Emden and stationary Schrödinger types. The
main technique for generating our results relies on a topological ap-
proach for the shooting method combined with non-existence results
to closely related boundary value problems.
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1 Introduction

Throughout the paper, assume that L and N ≥ 3 are positive integers,
Ω ⊆ RN is an open domain containing the origin, RL+ denotes the convex
cone {u ∈ RL |u1, u2, . . . , uL ≥ 0}, and

F = (f1, f2, . . . , fL) : Ω\{0} × RL+ −→ RL (1.1)

is a non-trivial, continuous vector-valued map with F(|x|, 0) ≡ 0 in Ω\{0}.
Consider the system of semilinear elliptic equations involving the Laplace
operator: −∆ui = fi(|x|,u) in Ω, for i = 1, 2, . . . , L, which we write more
concisely as

−∆u = F(|x|,u) in Ω. (1.2)

Our goal is to establish the existence of positive solutions in Ω = RN to coop-
erative systems of the form (1.2) where the nonlinearity F has supercritical
(or critical) growth. Here we say F has supercritical growth if

λ−(N+2)/(N−2)F(λ−2/(N−2)x, λu)
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is non-decreasing in λ ≥ 1 for all (x,u) ∈ Ω\{0} ×RL+. We say that system
(1.2) is cooperative if for i = 1, 2, . . . , L, (x,u), (x,v) ∈ Ω\{0} × RL+ with
u ≤ v and ui = vi implies that fi(|x|,u) ≤ fi(|x|,v). When referring to a
positive solution u = u(x) of system (1.2), it should always be understood
to belong to C2(Ω\{0}) ∩ C(Ω̄) if Ω is bounded or C2(Ω\{0}) ∩ C(Ω) if
Ω = RN , and it satisfies the equations pointwise in Ω\{0}. The typical
model here is perhaps the weighted elliptic system{

−∆u = |x|σ1(λ1u
p1vp2 + λ2v

p3) in Ω,
−∆v = |x|σ2(λ3v

q1uq2 + λ4u
q3) in Ω,

(1.3)

where σ1, σ2 ∈ (−2,∞), λj ≥ 0, pi, qi > 0, i = 1, 2, 3 and j = 1, 2, 3, 4.
Included in this model case are several familiar examples from conformal
geometry and mathematical physics. For instance, the particular system{

−∆u = upvq in Ω,
−∆v = vpuq in Ω,

(1.4)

is closely related to the Schrödinger systems for the Bose-Einstein conden-
sate [15, 18, 19]. System (1.3) can also be reduced to the system{

−∆u = vq in Ω,
−∆v = up in Ω,

(1.5)

which is often called the Lane-Emden system. Now, system (1.5) and its
scalar version, i.e., when p = q and u ≡ v, arise in a number of mathematical
problems such as the Yamabe problem, on finding the best constant in the
Sobolev inequality in RN and other geometric problems [5, 6, 13], and they
are also connected with the sharp Hardy-Littlewood-Sobolev inequality [17].
Another special case of (1.3) that has received recent attention is the Hénon-
Lane-Emden system [11, 25, 33],{

−∆u = |x|σ1vq in Ω,
−∆v = |x|σ2up in Ω.

(1.6)

These well-known models, especially the Lane-Emden system, have been
examined extensively in the past several decades. Of particular interest
to many are the necessary and sufficient conditions for the non-existence of
positive entire solutions. One obvious motivation for this is the fact that such
a Liouville type theorem is an important ingredient in establishing a priori
bounds on positive solutions to second-order elliptic problems with Dirichlet
data (cf. [10] and [12]). Specifically, the following question remains an open
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problem although an affirmative answer is known for dimension N ≤ 4
[3, 29, 31] and for radial solutions in any dimension N ≥ 3 [22]. Namely, it
is conjectured that system (1.5) has no positive solution in Ω = RN if and
only if (p, q) satisfies the subcritical condition

N

1 + q
+

N

1 + p
> N − 2.

An analogous conjecture with similar partial results holds for the Hénon-
Lane-Emden system [11, 25]. Interestingly enough, our method covers the
Lane-Emden and Hénon-Lane-Emden systems thus verifying this subcritical
condition is indeed necessary for the nonexistence of positive solutions in
any dimension N ≥ 3. However, this particular existence result was already
known, at least for the Lane-Emden system [30]. Our method also applies
to higher-order poly-harmonic systems. For example, given an integer m ∈
[1, N/2), p, q > 0, σ1, σ2 > −2, and if

N + σ1
1 + q

+
N + σ2
1 + p

≤ N − 2m,

then the Hardy-Littlewood-Sobolev type system,{
(−∆)mu = |x|σ1vq in Ω,
(−∆)mv = |x|σ2up in Ω,

admits a positive solution in Ω = RN [20, 32].
Nevertheless, in this paper we obtain existence results to a general class

of systems with power nonlinearities. Namely, if we take p,q,u ∈ RL+ and
write

|p| = p1 + p2 + · · ·+ pL and up = up11 u
p2
2 · · ·u

pL
L ,

then we may consider nonlinearities of the form{
fi(|x|,u) = |x|σ(upi

+ uqii+1), i = 1, 2, . . . , L− 1,

fL(|x|,u) = |x|σ(upL
+ uqL1 )

(1.7)

or
fi(|x|,u) = |x|σ(u

pi1
1 + u

pi2
2 + . . .+ u

piL
L ), i = 1, 2, . . . , L. (1.8)

Theorem 1. Let Ω = RN and σ ∈ (−2,∞). Then there hold the following.

(a) Let F be defined as in (1.7), and suppose pi ≥ (1, 1, . . . , 1) and

|pi|, qi ≥
N + 2 + 2σ

N − 2
, for i = 1, 2, . . . , L.

Then system (1.2) admits a positive entire solution.
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(b) Let F be defined as in (1.8) and suppose

pij ≥
N + 2 + 2σ

N − 2
for i, j = 1, 2, . . . , L.

Then system (1.2) admits a positive entire solution.

In fact, we establish an even more general existence result than Theo-
rem 1 assuming only that F is non-negative, cooperative, supercritical and
satisfies certain non-degeneracy conditions (to be specified shortly below).

1.1 Preliminaries and the Main Result

We start with some notation that will be used throughout the rest of the
paper. Let BR(x) ⊂ RN denote the usual open ball with radius R > 0,
center x, and boundary ∂BR(x). For simplicity, we sometimes use BR in
place of BR(0). We denote by ∂RL+ the boundary of the convex cone RL+,
and we write u > 0 (= 0, respectively) in RL+ to mean u1, u2, . . . , uL > 0
(= 0, respectively).

Now, for any fixed non-zero α ∈ ∂RL+, we may assign a permutation,
which we denote by Σ(α) = {i1, i2, . . . , ij , . . . , iL}, of the set {1, 2, . . . , j, . . . , L}
such that

αi1 , αi2 , · · · , αij = 0 and αij+1 , αij+2 , . . . , αL > 0.

In addition to the previous assumptions we placed on our systems, e.g.,
supercritical growth, Lipschitz continuous in u, etc., we will further impose
the following non-degeneracy conditions.

Condition A: The map F satisfy the following criteria:

(a) For a given positive constant c1 there exist constants c2 > 0 and σ ∈
(−2,∞) such that for |u| ≤ c1,

|F(x,u)| ≤ c2|x|σ in Ω\{0}.

(b) For any non-zero α ∈ ∂RL+, there exist C(α) > 0 and δ = δ(α) > 0 such
that

L∑
k=j+1

fik(|x|,u) ≤ C(α)

L

j∑
k=1

fik(|x|,u), x ∈ Ω\{0}, (1.9)

whenever |α − u| < δ (note that the summation above is taken with
respect to some Σ(α) as defined earlier).
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Our main result is the following.

Theorem 2. Let Ω = RN and suppose F is non-negative, locally Lipschitz
in u, has supercritical growth, and satisfies Condition A. Then system (1.2)
admits a positive entire solution u(x).

Remark 1. Recall a map F defined on Ω1×RL+ is said to be locally Lipschitz
continuous in u if for v ∈ RL+ and bounded Ω2 ⊂ Ω1, there exists an open
neighborhood N ⊂ RL+ of v such that F is Lipschitz continuous in u on
Ω2 ×N .

2 Proof of Theorem 2

To better communicate our ideas and for the reader’s convenience, let us
attempt to clarify the precise roles the conditions on F will play in the proof
of Theorem 2. Our proof will invoke a degree theoretic approach for the
shooting method and a non-existence result for the Dirichlet problem to
(1.2) where Ω = BR is any ball domain. Our method can be outlined as
follows.

STEP 1. Reformulate the elliptic system in radial coordinates and set up an
initial value problem with the assumption that no global solution
exists for any positive initial condition.

STEP 2. Construct the target map, which aims the shooting method, i.e.,
it maps initial values (initial shooting positions) to target values
related to the solution of the initial value problem.

STEP 3. Show that Condition A ensures the target map is continuous so
that we may apply a standard topological degree argument to
obtain a non-trivial zero of the target map.

STEP 4. The zeros of the target map correspond to positive solutions to a
closely related Dirichlet problem, but then we arrive at a contra-
diction with a known non-existence result for that boundary value
problem.

In this final section, we first define the target map then go over several
lemmas we require in our proof of the main result.
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2.1 The Target Map

For any initial value α > 0, set r = |x| and consider the initial value problem −
(

u′′(r) +
N − 1

r
u′(r)

)
= F(r,u(r)),

u′(0) = 0, u(0) = α,
(2.1)

where ′ denotes d/dr. Indeed, positive solutions to this problem, which we
denote by u(r, α), exhibit an important monotonicity property. The result
is elementary so we omit its proof.

Lemma 1. Let u(r, α) : [0, rmax) ⊆ R+ −→ RL+ be the unique positive
solution of (2.1) where [0, rmax) is the maximal interval of existence. Then
there holds

u′(r, α) ≤ 0 in (0, rmax).

Obviously, if we can find an initial condition α > 0 for which the asso-
ciated positive solution u(r, α) is global with rmax = ∞, then this would
produce a desired positive solution to system (1.2) thereby completing the
proof of Theorem 2. Otherwise, assuming that (2.1) admits no global posi-
tive solution for any α > 0, we may then define the following mapping.

Definition 1. Define the target map ψ : RL+ −→ ∂RL+ as follows.

(a) For α > 0, set ψ(α) = u(r0, α) where r0 = r0(α) is the smallest finite
value of r for which

ui0(r0, α) = 0 for some 1 ≤ i0 ≤ L.

(b) Set ψ ≡ Identity on ∂RL+.

Remark 2. As illustrated in Figure 1, this definition makes sense because
of the positivity of solutions, the monotonicity property of Lemma 1, and our
assumption that no global solution exists for any initial condition, i.e., the
trajectory must eventually touch the wall at some finite time. In particular,
we shall refer to (a) in the definition as the case when the solution touches
the wall.
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Figure 1: The target map ψ : RL+ −→ ∂RL+.

2.2 Preparations

Prior to our proof of Theorem 2, we prepare several results required in its
proof. First, we recall a basic property from Brouwer degree theory, and the
reader is referred to [1] and [24] for more details.

Lemma 2. Let U ⊂ RL be a bounded open set and let G,H : Ū 7→ RL be
continuous maps. Suppose that G ≡ H on ∂U and a /∈ G(∂U) = H(∂U).
Then

degree(G, U, a) = degree(H, U, a).

Lemma 3. The target map ψ : RL+ −→ ∂RL+ is continuous.

We defer the proof of this until the end, however, we state and prove
here a simple result that we will use in our proof of Lemma 3.

Lemma 4. For each given initial value α > 0, the unique positive solution
u(r, α) of (2.1) satisfies the integral representation

α− u(r, α) =

∫ r

0

1

τn−1

∫ τ

0
sn−1F(s,u(s, α)) ds dτ =: G(r, α), (2.2)

for 0 ≤ r ≤ r0(α).

Proof. Indeed, from the system of ordinary differential equations in (2.1), it
follows that

−(rn−1u′(r, α))′ = rn−1F(r,u(r, α)).
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By using the given initial conditions and carefully noting that part (a) of
Condition A justifies the integration of the above twice, we can easily arrive
at identity (2.2).

Lemma 5. For every a > 0, there exists an αa > 0 in Aa where

Aa :=

{
α ∈ int(RL+)

∣∣ L∑
i=1

αi = a

}

such that ψ(αa) = 0.

Proof. Define Ba to be the set

Ba :=

{
α ∈ ∂RL+

∣∣ L∑
i=1

αi ≤ a

}
.

It is clear that ψ maps Aa into Ba.
Now define the homeomorphism ϕ : Ba −→ Aa by

ϕ(α) = α+
1

L

(
a−

L∑
i=1

αi

)
(1, 1, · · · , 1)

with continuous inverse ϕ−1 : Aa −→ Ba defined

ϕ−1(α) = α−
(

min
i=1,··· ,L

αi

)
(1, 1, · · · , 1).

Set η = ϕ ◦ ψ : Aa −→ Aa. Then η is continuous on Aa by Lemma 3 and
is equivalent to the identity map on the boundary of Aa. By Lemma 2, the
index of the map satisfies degree(η,Aa, α) = degree(Identity, Aa, α) = 1 for
any interior point α in Aa. This implies that η is onto, and thus ψ is onto.
Hence, there exists an αa > 0 in Aa such that ψ(αa) = 0.

As emphasized earlier, we shall make use of a certain type of non-
existence result; namely, we require the following, which is a special case
of a general non-existence result in [28] (Theorem 1 in that paper).

Lemma 6. Consider the boundary value problem{
−∆u = F(|x|,u) in BR,

u = 0 on ∂BR,
(2.3)

where F is cooperative, Lipschitz continuous in u, and has supercritical
growth. Then system (2.3) has no positive solution for any R > 0.
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2.3 Proof of Theorem 2

Fix a number a > 0 and consider the initial value problem (2.1). We proceed
by contradiction and assume that there does not exist any α > 0 for which
a global solution of (2.1) exists. In view of Lemma 5, we know there is
some αa > 0 such that ψ(αa) = 0, and thus we denote by w = w(r, αa)
the unique positive solution of (2.1) with initial value αa. So by definition
of the target map, there exists a smallest positive number r0 = r0(αa) such
that wi0(r0, αa) = 0 for some i0 ∈ {1, 2, . . . , L}. Indeed, this implies that
w(r0, α) = ψ(αa) = 0. Then there holds that u(x) := w(|x|, α) is a positive
solution of (2.3) with R = r0, but this contradicts with Lemma 6. This
completes the proof of the theorem.

2.4 Proof of Lemma 3

Choose any α ∈ RL+ and we show ψ is continuous at α. To do so, there
are two cases to consider. Case (1): When α > 0 and the corresponding
solution u(r, α) touches the wall. Case (2): When α ∈ ∂RL+.

Case (1): This case is simple. Namely, since the nonlinearity F is non-
negative, u′i0(r0, α) < 0 by basic calculations or simply by Hopf’s Lemma.
This transversality condition along with ODE stability imply that for α suf-
ficiently close to α, the solution to the perturbed initial value problem with
initial condition α must be close to ψ(α). This proves that ψ is continuous
at α for this case.

Case (2): The continuity of ψ at α = 0 follows easily from Lemma 1 since
|ψ(α) − ψ(α)| = |ψ(α)| ≤ |α| −→ 0 as α −→ α. Therefore, we can assume
α ∈ ∂RL+ is non-zero. In fact, Condition A ensures that we may assume

α1 = α2 = · · · = αj = 0 and αj+1, . . . , αL > 0, for some 1 ≤ j < L.

Of course, the first j-components of ψ are continuous at α since

|ψk(α)− ψk(α)| ≤ |αk| −→ 0 as |α− α| −→ 0 for k = 1, 2, . . . , j.

However, we must verify this holds for all the solution components, and to
circumvent this issue we will make use of Condition A. Particularly, we first
prove

Lemma 7. There exists a suitably small δ1 ∈ (0, δ) such that for any δ2 ∈
(0, δ1)

|α− u(r, α)| < 2C(α)δ2 for 0 ≤ r ≤ r0(α) whenever |α− α| < δ2, (2.4)
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where C(α) is the same constant found in Condition A.

If we momentarily assume this lemma holds, then it is clear we can then
set r = r0(α) in (2.4) to get

|ψ(α)− ψ(α)| = |α− ψ(α)| −→ 0 as α −→ α,

and this would complete the proof. Therefore, it only remains to prove the
last lemma.

Proof of Lemma 7 Assume the contrary; that is, for some suitably small
δ2 > 0, there exist β > 0 with |β − α| < δ2 and R ∈ (0, r0(β)) for which

|α− u(r, β)| < 2C(α)δ2 in (0, R) but |α− u(R, β)| = 2C(α)δ2.

Without loss of generality, we assume C(α) > 2(L + 1) and 2C(α)δ2 < δ.
Then, for 0 < r < R,

|α− u(r, β)| ≤ |α− β|+ |β − u(r, β)|

≤ δ2 +

j∑
k=1

|βk − uk(r, β)|+
L∑

k=j+1

|βk − uk(r, β)|. (2.5)

From Lemma 4 and part (b) of Condition A, we get

L∑
k=j+1

|βk − uk(r, β)| =
L∑

k=j+1

Gk(r, β)

≤ C(α)

L

j∑
k=1

Gk(r, β)

=
C(α)

L

j∑
k=1

|βk − uk(r, β)|.

Inserting this estimate into (2.5) yields

|α− u(r, β)| < δ2 +

j∑
k=1

|βk − uk(r, β)|+ C(α)

L

j∑
k=1

|βk − uk(r, β)|

≤ δ2 +
(

1 +
C(α)

L

) j∑
k=1

|βk| ≤ (1 + L+ C(α))δ2

<
3C(α)

2
δ2.
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We arrive at a contradiction once we send r −→ R in the last estimate.
This proves the lemma and thus completes the proof of the continuity of the
target map.

2.5 Further Applications

We conclude this paper with some brief remarks on simple extensions of our
earlier results. First, notice carefully that Lemma 6 does not require F to
be non-negative. Therefore, the assumption that F ≥ 0 in Theorem 2 can
be lifted so long as the continuity of the target map holds. Fortunately,
the continuity of the map persists provided that Condition A is slightly
modified. More precisely, we replace (1.9) in Condition A part (b) with

L∑
k=j+1

|fik(|x|,u)| ≤ C(α)

L

j∑
k=1

fik(|x|,u), x ∈ Ω\{0},

and assume additionally that

L∑
i=1

fi(|x|,u) ≥ 0 in Ω\{0} × RL+.

The proof of the continuity in this setting follows a similar process as our
proof above but with some obvious adjustments. It more or less follows
the arguments developed recently in [9], and so we refer the reader to that
paper for the details. Nevertheless, the conclusion of Theorem 2 remains
true under these changes.

Remark 3. Note carefully that the continuity of the target map remains
true without imposing that F is cooperative and has supercritical growth as
their requirement was only because of Lemma 6.

Although the continuity of the target map holds under the modified
conditions, Lemma 6 does not appear general enough to include some in-
teresting examples with nonlinearities containing weighted coefficients and
sign-changing components. For instance, consider the weighted system with
sign-changing sources:{

−∆u = |x|σ(vp + λ1v
q − λ2up) in Ω,

−∆v = λ2|x|σup in Ω,
(2.6)
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where λ1, λ2 > 0,

σ ∈ (−2,∞) and p, q ≥ N + 2 + 2σ

N − 2
. (2.7)

Indeed, F in this cooperative system is continuous and locally Lipschitz con-
tinuous in u in the proper region, satisfies the modified version of Condition
A, and the sum of its sources is non-negative thereby ensuring the continu-
ity of the target map. On the other hand, a Pohozaev type identity (similar
to those derived in [9]) can be established. The calculations are standard
and so we only sketch the main steps (the reader is referred to [9, 21, 27]
for detailed steps in deriving similar identities). In particular, if Ω = BR
and (u, v) is a positive solution of class C2(Ω\{0}) ∩ C1(Ω̄) to (2.6) satis-
fying (2.7) with zero Dirichlet data, then elementary calculations yield the
Pohozaev type identity

−R
∫
∂BR

∇u · ∇v dS + (2−N)

∫
BR

∇u · ∇v dx

=
R

2

∫
∂BR

|∇v|2 dS − N + σ

1 + p

∫
BR

|x|σvp+1 dx− N + σ

1 + q

∫
BR

λ1|x|σvq+1 dx

+
N − 2

2

∫
BR

|∇v|2 dx− N + σ

1 + p

∫
BR

λ2|x|σup+1 dx.

Since (u, v) is a solution, we can use this fact to further simplify the previous
identity to get(N + σ

1 + p
− N − 2

2

)∫
BR

(
|x|σvp+1 + λ2|x|σup+1

)
dx

+
(N + σ

1 + q
− N − 2

2

)∫
BR

λ1|x|σvq+1 dx

= R

∫
∂BR

(
∇u · ∇v +

1

2
|∇v|2

)
dS. (2.8)

By noticing that the right-hand side of identity (2.8) is strictly positive,
we arrive at a contradiction. Hence, system (2.6) with zero Dirichlet data
satisfying (2.7) has no positive solution in Ω = BR for any R > 0. As a
result of our method, this is indeed enough to conclude that system (2.6)
admits a positive solution in Ω = RN .

Remark 4. There are plenty of works in the literature dedicated to non-
existence results to various elliptic problems and some examples can be found
in [21, 22, 23, 26, 27, 28] just to list a few. It is therefore natural to seek
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other applications of our degree theoretic approach in view of these non-
existence results. This can certainly be addressed in future investigations.

Remark 5. We should add that our results also include variants of system
(1.4) with different power exponents. Although the existence of positive so-
lutions for a more general version of system (1.4) was covered in [16], it
is not difficult to adapt our ideas and methods here to recover and improve
those results by allowing for weighted coefficients, for example.
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Discrete Contin. Dyn. Syst., 34(6):2513–2533.

[12] Gidas, B., Spruck, J. (1981). A priori bounds for positive solutions of nonlinear
elliptic equations. Commun. Partial Differ. Equations, 6(8):883–901.

[13] Lee, J. M., Parker, T. H. (1987). The Yamabe problem. Bull. Am. Math. Soc.
(N.S.), 17(1):37–91.

[14] Li, C. (1996). Local asymptotic symmetry of singular solutions to nonlinear
elliptic equations. Invent. Math., 123(2):221–231.

[15] Li, C., Ma, L. (2008). Uniqueness of positive bound states to Schrödinger
systems with critical exponents. SIAM J. Math. Anal., 40(3):1049–1057.

[16] Li, C. and Villavert, J. A degree theory framework for semilinear elliptic
systems. Proc. Am. Math. Soc., 144(9):3731–3740.

[17] Lieb, E. H. (1983). Sharp constants in the Hardy–Littlewood–Sobolev and
related inequalities. Ann. Math., 118(2):349–374.

[18] Lin, T., Wei, J. (2005). Ground state of N coupled nonlinear Schrödinger
equations in Rn, n ≤ 3. Commun. Math. Phys., 255(3):629–653.

[19] Lin, T., Wei, J. (2005). Spikes in two coupled nonlinear Schrödinger equations.
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